Automated Algorithm Selection on Continuous Black-Box Problems By Combining Exploratory Landscape Analysis and Machine Learning
نویسندگان
چکیده
In this paper, we build upon previous work on designing informative and efficient Exploratory Landscape Analysis features for characterizing problems’ landscapes and show their effectiveness in automatically constructing algorithm selection models in continuous black-box optimization problems. Focussing on algorithm performance results of the COCO platform of several years, we construct a representative set of high-performing complementary solvers and present an algorithm selection model that manages to outperform the single best solver out of the portfolio by factor two. Acting on the assumption that the function set of the Black-Box Optimization Benchmark is representative enough for practical applications the model allows for selecting the best suited optimization algorithm within the considered set for unseen problems prior to the optimization itself based on a small sample of function evaluations. Note that such a sample can even be reused for the initial algorithm population so that feature costs become negligible.
منابع مشابه
Comprehensive Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems Using the R-Package flacco
This paper provides an introduction into to the R-package flacco. A slightly modified version of this document has recently been submitted to the Journal of Statistical Software and is currently under review. Choosing the best-performing optimizer(s) out of a portfolio of optimization algorithms is usually a difficult and complex task. It gets even worse, if the underlying functions are unknown...
متن کاملLocal Landscape Patterns for Fitness Landscape Analysis
Almost all problems targeted by evolutionary computation are black-box or heavily complex, and their fitness landscapes usually are unknown. Selection of the appropriate search algorithm and parameters is a crucial topic when the landscape of a given target problem could be unknown in advance. Although several landscape features have been proposed in this context, examining a variety of landsca...
متن کاملComprehensive Analysis of Dense Point Cloud Filtering Algorithm for Eliminating Non-Ground Features
Point cloud and LiDAR Filtering is removing non-ground features from digital surface model (DSM) and reaching the bare earth and DTM extraction. Various methods have been proposed by different researchers to distinguish between ground and non- ground in points cloud and LiDAR data. Most fully automated methods have a common disadvantage, and they are only effective for a particular type of surf...
متن کاملTransparent Machine Learning Algorithm Offers Useful Prediction Method for Natural Gas Density
Machine-learning algorithms aid predictions for complex systems with multiple influencing variables. However, many neural-network related algorithms behave as black boxes in terms of revealing how the prediction of each data record is performed. This drawback limits their ability to provide detailed insights concerning the workings of the underlying system, or to relate predictions to specific ...
متن کاملDistributed Black-Box Software Testing Using Negative Selection
In the software development process, testing is one of the most human intensive steps. Many researchers try to automate test case generation to reduce the manual labor of this step. Negative selection is a famous algorithm in the field of Artificial Immune System (AIS) and many different applications has been developed using its idea. In this paper we have designed a new algorithm based on nega...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1711.08921 شماره
صفحات -
تاریخ انتشار 2017